2 铝合金压铸模的熔损效应
在受到炽热的合金熔体、半固态合金冲刷,并保持加压状态下工作的铝合金压铸模在使用一段时间后,表面的保护层一般会形成网状微裂纹、龟裂甚至表面层脱落。如果不对模具表面进行修复和保养,则会发生更加严重的所谓“熔损”效应。“熔损”指的是模具在工作一段时间后,工作面受到严重侵蚀,使模具质量变轻的过程。熔损是压铸合金对压铸模具的一系列腐蚀、冲蚀、侵蚀及焊合的综合机械作用结果。
模具基体材料Fe在压铸铝合金中的溶解过程又是一种Fe-Al 物理化学反应并生成复杂金属间化合物的过程。同时,基体中的各种合金元素也会参与到这一反应中,而所生成的金属间化合物的物相结构、反应机制等至今没有得到明确解释,只能对其进行大致的定性分析。不过由于熔损反应与在模具表面早期发生的焊合有着许多共性,因此在发生熔损的区域,往往也能找到与焊合生成金属间化合物相类似的物质,笔者在对H13 钢浸蘸入ADC12 压铸铝合金的试验中,部分试样发生了严重的熔损。
3 铝合金压铸模预防焊合、熔损的措施
作为铝合金压铸模,其整个系统一般价格昂贵,型腔都比较复杂。因此分析模具失效的原因,采取相应的方法预防失效,以延长模具使用寿命,是模具工业一个相当重要的课题。
3.1 蒸汽氧化处理
蒸汽处理常应用于工具的表面处理以及常规兵器的表面处理,基本上都是起防锈作用。当其作为一种有效的表面处理工艺被运用于热作模具钢时,我们发现它能在一定程度上提高模具的抗冷热疲劳性能和抗熔融铝合金热熔损性能[8 ] 。因为通过蒸汽氧化处理的钢铁材料在其表面可以生成一层具有保护作用的Fe3/O4薄膜,
Fe3O4是铁的氧化物中致密度较高、结构较稳定的氧化物。蓝色的Fe3O4具有耐高温、抗氧化、致密、耐磨损、耐蚀、与基体结合强度好等优点。由于Fe3O4氧化膜的微观结构是粗糙且凹凸不平的,因此它还能存储一些冷却剂,在铸件压铸成形以后方便脱模,起到了润滑的作用,使模具表面不易产生氧化腐蚀沟槽,从而减少诱发热疲劳裂纹的因素。而且,紧实致密的氧化膜包围在模具上起到了隔离炽热熔融金属或高温液体的热冲刷作用,保护了模具材料基体的完整性,从而提高了模具的使用寿命。 在实际应用中,多数的模具生产商也建议用户在使用热作模具之前进行轻微氧化,通常是在空气中加热到500 ℃,保持1~2h ,在模具表面产生1~10μm 的氧化层。而一般在压铸模试模时,有时也会在模具表面形成致密的黑色氧化物层,此氧化物层主要由富含C、Si 、S 的Fe[html]3O[html]4构成。同样能够起到保护模具表面并延长使用寿命的积极作用 。
3.2 离子渗氮
在模具表面进行离子渗氮可以生成连续的氮化物层(白亮层) ,这对提高模具的抗焊合、抗热熔损、抗侵蚀能力都是非常有益的,同时也会使得模具表面的耐磨性能有所提高[7 ] 。离子渗氮除具有普通渗氮的优点之外,还有渗氮速度快(是气体渗氮的2~3 倍) 、氮化组织容易调整控制、处理温度低、热变形小、处理后表面状态好、节能及无公害等优点。
氮化层比氧化层更厚更致密,更耐铝合金冲蚀,对保护模具表面可以起到积极作用。但是,考虑到模具的热疲劳性能,氮化层由于较硬,容易形成热疲劳裂纹。而一旦形成微裂纹后的氮化层在抗熔融铝合金焊合与熔损上的效果则会变差。因此如果解决好模具氮化层上的热疲劳问题,渗氮将会是一个十分优秀的压铸模表面处理工艺。
3.3 PVD、CVD 表面镀覆
物理气相沉积技术(PVD) ,由于处理温度低,畸变小,无公害,容易获得超硬层,涂层均匀等特点,已经广泛应用于精密模具表面强化处理,显示出良好的应用效果。PVD 处理是将具有特殊性能的稳定化合物TiN、Ti (C ,N) 、SiN、(Ti ,Si) N 等沉积在金属表面,形成一层超硬覆盖膜,经PVD 处理获得的TiN 层的塑料模,其使用寿命提高3~9 倍,金属压力加工工具寿命提高3~5 倍。
化学气相沉积技术(CVD) ,沉积物由引入高温沉积区的气体离解所产生。CVD 处理的模具形状不受任何限制。CVD 可以在含碳量大于018 %的工具钢、渗碳钢、高速钢、轴承钢、铸铁以及硬质合金等表面上进行。气相沉积TiC、TiN 能应用于挤压模、落料模和弯曲模,也适用于粉末成型模和塑料模等。在金属模具上涂覆TiC、TiN 覆层的工艺, 其覆层硬度高达3000HV ,且耐磨性好、抗摩擦性能提高、冲模的使用寿命可提高1~4 倍。




