在相对较低分辨率ADC之前连接可编程增益
将输入信号加在ADC之前连接的缓冲放大器。
使用高分辨率ADC。
>高分辨率模数转换器PGA法历史上,PGA方法曾经非常流行,因为与较低成本ADC配对使用时,它比高分辨率ADC更具成本优势。此方法特别适用于输入信号接近0V但具有较宽动态范围的情况。
这类似于过程控制系统,需要监控具有不同信号范围的各种
这意味着当PGA切换到不同的增益值时,数字输出可能在那个点发生上下跳变。因此,在每一级都必须小心匹配增益来降低这种影响。从不同信号源中复用信号时,这个问题并不重要。然而,这与系统是否针对每个信号设计固定增益有关,如图2所示,或者对于较宽范围信号输入进行动态增益切换。
增益范围调整方法会产生以下问题:
虽然可驱动一个12位ADC,但如果在其前放置一个增益为27=128的放大器,则放大器的有效输入噪声和失调电压精度必须为18位。对于采用固定增益运算放大器,这会有问题,而采用PGA切换时,问题可能还会更严重。这样,将精度要求从ADC转移到PGA,却没有带来任何好处。
单个高分辨率ADC的优点是简单(见图3)。如果使用16位ADC,对于较小动态范围的信号,丢失3、4或5位会使该信号的有效分辨率降至11至14位。然而,对于大多数传感器来说此精度足够了,因为ADC的精度相当于0.05%或更佳。
由于这些器件的价格最近已降到5美元或更低,因此成本将不再是需要考虑的因素。如果需要更高的有效分辨率,或者需要适应更宽的动态范围,可以使用18至24位的ADC,仍然能提供性价比较高也更简单的系统。




