强干扰小信号检测的计算机仿真研究

   2023-10-05 互联网2090
核心提示:摘 要 强干扰、小信号的检测,是实现铁路信号可靠工作的重要研究领域。采用滤波加频谱分析的方法,可以克服时域检测无法克服的

摘 要 强干扰、小信号的检测,是实现铁路信号可靠工作的重要研究领域。采用滤波加频谱分析的方法,可以克服时域检测无法克服的缺点,通过计算机仿真,可以看出干扰大于信号时,这种检测方法,仍能很好地完成信号的检测。
关键词 强干扰 小信号 检测 仿真

  轨道电路是自动闭塞的基础,其可靠性直接影响行车安全、列车通过能力和铁路运输效率。目前国内外铁路信号的自动闭塞、机车信号和列车控制系统的大部分都是由轨道电路作为基础。轨道电路由检测列车是否占用区间,发展到向车载列车控制系统传输大量的信息。
  为了保证列车运行的安全,保证轨道电路向区间信号,车载控制系统传输正确、可靠的信息,就需要研究强干扰、小信号的检测方法。

1 待检测的小信号的属性分析

  设键控移频方波信号f(t)的频率为f1,周期为T,时间表达式为:

9806g01.gif (2240 bytes)

(1)

  频率为f0的载频信号经f(t)调制后,载频信号的频率偏移量Δf为:

9806g02.gif (1266 bytes)

(2)

  式中k—系数,代表移频器的灵敏度,单位为Hz/V。移频信号的频率瞬时频率为:

9806g03.gif (2621 bytes)

(3)

  其瞬时相位θ(t)是一个以f1为频率的周期信号,故可用傅里叶级数来表示,上式中的Cn为傅里叶系数,经一系列的数学推导,得到移频信号的傅里叶级数的数学模型为:

9806g04.gif (4205 bytes)

(4)

  m定义为移频指数:

9806g05.gif (1217 bytes)

(5)

  由此可得频谱的相对幅度为:
  载频分量的相对幅度为:9806g06.gif (1477 bytes)
  奇次边频分量的相对幅度为:9806g07.gif (1625 bytes)
  偶次边频分量的相对幅度为:9806g08.gif (1644 bytes)
  由此可得,移频信号经过一系列的数学运算,其频谱发生了频变,使原来发送的上边频和下边频频率不存在了,而取而代之的是出现了一个新的频率成份—中心频率,且其中心频率和调制频率可由频谱分析的方法进行测量,因此可采用快速傅里叶变换的方法,实现频率的测量。

2 强干扰条件下的小信号检测方法

  根据移频信号的发送原理,按照[2]中给出的方法,采用了636.574 Hz的采样频率,完成了中心频率550 Hz、调制频率为26 Hz时的频谱图,以及中心频率2 600 Hz、调制频率为10.3 Hz时的1024FFT变换,计算出了它的功率谱图。由于频谱的泄漏现象,使本来应以中心频率对称的频谱(它的峰值也应对称),出现了大小不等的峰值,但频谱的位置还是对称的,而计算频率值是以位置来计算的,所以峰的不对称,不影响频率的检测精度。
  根据选择的采样频率,其频率分辩率为:

fa=636.574/1024=0.6217

(6)

2.1 无干扰情况下的小信号检测
  中心频率为550 Hz、调制频率为26 Hz,根据[2]中的方法,可得中心频率应位于:

1024-550/fa=139

  从频谱中也可看到中心频率的位置为139,这与理论计算相符。由频谱的计算得移频信号的中心频率和调制频率分别为550.16425.488,由于频率分辨率仅有0.6217,所以仿真结果和理论分析一致。

9806t01.GIF (4208 bytes)

1 中心频率为550Hz、调制频率为26Hz的频谱

9806t02.GIF (4254 bytes)

2 中心频率为2 600Hz、调制频率为10.3Hz

9806t03.GIF (4332 bytes)

3 中心频率为550Hz、调制频率为26Hz的频谱

9806t04.GIF (4705 bytes)

4 中心频率为2600Hz、调制频率为10.3Hz

  从频谱中也可看到中心频率的位置为86,这与理论计算相符。由频谱的位置计算得到移频信号的中心频率和调制频率分别为2599.7599.946,由于频率分辩率仅有0.6217,所以仿真结果和理论分析一致。
2.2 50Hz强干扰情况下的小信号检测
  假设接收的信号中存在50Hz的干扰信号,根据采用的采样频率,计算干扰信号在80这个位置,处于移频信号的带内,为了消除干扰的影响,就需要在进行FFT计算时,首先应对50Hz的干扰进行隐波处理,然后进行正常的运算。这里以国产移频信号,载频频率为550Hz、调制频率为26Hz为例进行仿真,在仿真中加入了10倍于移频信号的50Hz强干扰信号,设计了50Hz的隐波器,得到图3所示的频谱图,可以看出图1和图3没有多大区别。可以准确解调出移频信号的中心频率和调制频率。
2.3 50Hz150Hz250Hz强干扰下的小信号检测
  假设在接收的信号中,存在10倍于移频信号的50Hz干扰,2倍于移频信号的150Hz的干扰,与移频信号相等的250Hz干扰,根据采样频率,可以计算出这些干扰的频谱分别位于80241402,正好落在移频信号的频带内,出现严重的频谱混叠,必须减小它的影响,才能解调出移频信号,为此在这里采用滤波的方法,设计一高通滤波器,截止频率为400Hz。本仿真以UM71,载频的中心频率为2 600Hz、调制频率为10.3为例进行仿真,得到如图4所示的频谱图。从图中可以准确解调出移频信号的中心频率和调制频率。

3 结束语

3.1 在深入探讨和分析轨道电路移频信号频谱特点的基础上,考虑到电气化铁路不平衡电流的交流干扰和提高铁路的列车速度,以及轨道电路工作环境恶劣、信号变化大等特点,通过分析FFT和带通信号的特点及实际FFT频谱图随采样频率变化,提出采样频率确定方法,对移频轨道电路中的小信号进行计算机仿真。
3.2 仿真结果表明,在无干扰的情况下,可以很清楚地得到移频信号的频谱图,由频谱图可以方便地计算出移频信号的频率值,且频率分辩率在要求的范围内。
3.3 在存在强干扰的情况下,由于干扰信号正好落在了频带内,出现频率混叠现象,但采用了加入陷波器和滤波器的方法,先对这些信号进行预处理,再进行FFT变换,就能很好地解决频谱混叠的问题,并取得了对小信号检测的满意结果。

本项目得到了铁道部科技基金和北方交大科技基金资助。

魏学业 北方交大通信与控制工程系副教授 100044 北京市

4 参考文献

1 杨福生,戴先中.带通信号采样定理.信号处理,19861(2)5861
2
 魏学业,汪希时,丁正庭.移频轨道电路自动测试系统的设计.铁道学报,19965(18)6368
3
 费锡康.无绝缘轨道电路原理与分析.北京:中国铁道出版社,1993
4
 曾庆勇.微弱信号检测.杭州:浙江大学出版社,1986


 
举报收藏 0打赏 0评论 0
 
更多>同类资讯
推荐图文
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  隐私政策  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅