0 前 言
表面工程技术在过去的20多年中经历了从单一到复合再到纳米技术的发展历程。表面工程在设备失效零部件修复、新零部件表面强化和表面修饰等方面,一般采取两种方法进行处理: (1)表面强化,如表面喷丸、电火花表面强化以及表面热处理和表面化学处理等; (2)表面涂覆,常用的技术有电镀和电刷镀、喷涂、堆焊以及表面黏涂等[1, 2]。在采用覆层技术对零部件表面进行处理时,其表面覆层厚度的检测就显得尤为重要。若覆层太薄,可能满足不了零部件表面性能的要求,达不到表面处理的目的;若覆层太厚,不仅造成材料的浪费,还会造成覆层内应力过大,降低了覆层的结合强度,特别是对零部件配合面的表面处理,要保证零部件表面处理后的尺寸和新品零部件的设计尺寸相一致,以满足产品设计时的配合公差;若覆层厚薄不均,亦会对涂镀层的多种力学物理性能产生不良影响[3]。为此,要求采取一定的手段对覆层厚度进行测量。以下主要对零部件表面涂镀层厚度的测量方法进行了综述,并对其发展进行了展望。
1 测试方法的分类
按有无破坏性,表面涂镀层厚度测试方法可分为有损检测和无损检测。有损检测方法主要有计时液流测厚法、溶解法、电解测厚法等,这种方法一般比较繁琐,主要用于实验室。目前也有便携式测厚仪,适合在现场使用。常用的无损检测方法有库仑-电荷法、磁性测厚法、涡流测厚法、超声波测厚法和放射测厚法等,各种无损测厚法均有成型的仪器设备,使用起来方便简单,且无需对表面涂镀层进行破坏。因此,该方法已得到了广泛的应用。
2 常用测量方法的研究进展
2. 1 电量法测厚
镀层电量法测厚的根本原理是根据1838年建立的法拉第定律测量,即通过安培小时计测量刷镀过程中的电量,然后在假设所有通过电量均用于镀层沉积的条件下计算镀层的厚度:
δ=QC·S
这种方法只需要在电镀电源上配置一个安培电流计,在刷镀过程中实时记录电镀过程所消耗的电量,并根据上式计算得到镀层的厚度。目前基本上所有的电镀电源均配备有安培电流计,可实现镀层厚度的实时测量。同时,采用该原理进行镀层厚度的自控仪已经开发出来并投入了实际应用[4]。其优
点是方便快捷,可实现镀层厚度的实时测量,缺点是测量精度不高。这是由于镀液的耗电系数是随镀液的种类、温度、pH值和刷镀时的压力以及电流密度的变化而改变的,并且其相互之间的关系非常复杂。但是,采用该方法进行镀层厚度测量时,一般认为耗电系数是恒定的,因而导致了测量结果的系统误差。
2. 2 电解法(库仑法)测厚
电解法的原理是在镀层表面的已知面积上,以恒定的直流电流在适当的溶液中溶解镀层金属。当镀层金属溶解完毕,裸露基体金属或中间层镀层时,电解池电压发生跃变,即指示测量已达终点。镀层的厚度根据溶解镀层金属消耗的电量、镀层被溶解的面积、镀层金属的电化当量、密度及阳极溶解的电流效率计算确定。
根据电解法设计的电解测厚仪的测厚过程类似于电镀,但化学反应的方向正好相反,即通过对被测部分的金属镀层进行局部阳极溶解,通过阳极溶解镀层达到基体时的电位变化及所需时间来进行镀层厚度的测量。电解测厚仪具有测量准确、不受基体材料影响、重现性好和使用简便等优点,在国内外电镀行业得到了广泛应用。与其他测厚仪相比,电解测厚仪还具有一个突出的优点就是能够测量多镍镀层中每层镍的厚度及各镀层之间的电化学电位差。目前已有很多成熟的电解测厚仪产品得到了广泛应用,如武汉材料保护研究所研制生产的DJH系列电解测厚仪、ZD-B系列电解测厚仪和武汉康捷科技发展有限公司开发的KJ-4000、KJ-3000系列库仑测厚仪;国外比较成熟的库仑镀层测厚仪有德国EPK公司开发的GALVANOTEST 3000等。该仪器既可以测量平面上的镀层,也可以测量曲面上的镀层,并预置了10种金属的测量参数(Cr,N,i Cu,Zn,Ag, Sn,Ms, Pb,Cd和Au等)。除此之外,还可另设8种金属的测量参数,其镀层厚度最大测量范围为0. 05~75. 00μm。
2. 3 磁性测厚
磁性测厚法可分为2种:磁吸力测厚法和磁感应测厚法。
磁吸力测厚法的测厚原理:永久磁铁(测头)与导磁钢材之间的吸力大小与处于这两者之间的距离成一定比例关系,这个距离就是覆层的厚度。利用这一原理制成测厚仪,只要覆层与基材的导磁率之差足够大,就可进行测量。测厚仪基本结构由磁钢、接力簧、标尺及自停机构组成。磁钢与被测物吸合后,将测量簧在其后逐渐拉长,拉力逐渐增大。当拉力刚好大于吸力,磁钢脱离的一瞬间记录下拉力的大小即可获得覆层厚度。新型的产品可以自动完成这一记录过程。
磁感应测厚法的基本原理:利用基体上的非铁磁性涂覆层在测量磁回路中形成非铁磁间隙,使线圈的磁感应强度减弱;当测量的是非铁磁性基体上的磁性涂镀层厚度时,则随着涂镀层厚度的增加,其磁感应强度也会增加。利用磁感应原理的测厚仪,原则上可以测量导磁基体上的非导磁覆层厚度,一般要求基材导磁率在500H/m以上。如果覆层材料也有磁性,则要求与基材的导磁率之差足够大(如钢上镀镍)。早期的产品采用指针式表头,测量感应电动势的大小,仪器将该信号放大后来指示覆层厚度。近年来的电路设计引入稳频、锁相、温度补偿等新技术,利用磁阻来调制测量信号。还采用专利设计的集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪分辨率达到0. 1μm,允许误差1%,量程10 mm。
磁性原理测厚仪可用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层以及化工石油行业的各种防腐蚀涂层。其特点是操作简便、坚固耐用、不用电源、测量前无须校准、价格较低,适合车间做现场质量控制。
2. 4 电涡流测厚
涡流测厚仪是根据涂镀层与基体材料的导电性有足够的差异来进行金属基材上涂覆层的物性膜厚来测量的。该方法实质上也属于电磁感应原理,但能否采用该方法进行厚度测定,与基体及涂镀层材料的导电性有关,而与其是否为磁性材料无关。其工作原理为:高频交流信号会在测头线圈中产生电磁场,当测头靠近导体时,就在其中形成涡流。测头离导电基体愈近,则涡流愈大,反射阻抗也愈大。这个反馈作用量表征了测头与导电基体之间距离的大小,也就是导电基体上非导电覆层厚度的大小。由于这类测头专门测量非铁磁金属基材上的覆层厚度,所以通常称之为非磁性测头。非磁性测头采用高频材料做线圈铁芯,例如铂镍合金或其他新材料。与磁感应原理比较,主要区别是不同的测头、不同的信号频率和大小及不同的标度关系。与磁感应测厚仪一样,涡流测厚仪也达到了分辨率0. 1μm、允许误差1%、量程10mm的高水平。目前已有研究表明[5],采用电涡流传感器在多频率多参数下可以实现钢材表面涂镀层厚度的在线测量。
采用电涡流原理的测厚仪,主要是对导电体上的非导电体覆层厚度的测量,但当覆层材料有一定的导电性时,通过校准也同样可以测量,只是要求两者的导电率之比至少相差3~5倍(如铜上镀铬)。
2. 5 磁性/涡流测厚
磁性测厚和涡流测厚均有缺点,为此,很多厂家将两者综合在一起进行测定,采用的探头有3种: F型、N型和FN型。其中F型探头采用磁感应原理,可用于钢铁上的非磁性涂镀层,如油漆、塑料、搪瓷、铬和锌等;N型探头采用涡流原理,用于有色金属(如铜、铝、奥氏体不锈钢)上的绝缘层,如阳极氧化膜、油漆和涂料等;而FN型探头同时具有F和N型探头的功能,利用这种两用型探头,可实现在磁性和非磁性基体上自动转换测量。目前开发比较成熟的磁性测厚仪有时代公司的TT220,德国EPK公司开发的MINITEST4100/3100/2100/1100系列测厚仪和PHYNIX公司的Surfix/Pocket-Surfix便携式涂镀层测厚仪,可以方便地实现各种条件下的无损测厚。
2. 6 X射线荧光测厚
X射线荧光测厚法原理:利用低能光子源发出的低能光子激发镀层物质或基底材料,根据激发出的荧光能量和强度(或基底材料荧光在镀层中的衰减)来确定被测物质元素及其厚度。因此,利用X射线荧光分析技术测厚,在仪器设计方面最重要的是选择和使用低能光子激发源,探测X射线荧光的探测器以及对荧光进行能量选择的滤光片。可以根据待测物质(镀层)来选择合适的同位素光子源,选择的放射源的光子能量要略高于待测元素的吸收限能量,以便对待测元素有较高的激发效率,同时也可减少散射的干扰。除了能量的因素外,半衰期、活度、制备质量对环境的影响以及价格等也是考虑的因素[6],如对锌镀层的测量,238Pu、241Am和3H/Zr等都是可使用的光子源。姜睿采用X射线荧光测厚原理制备的热镀锌层测厚系统在宝钢得到了实际应用,在降低成本、提高经济效益上取得了明显的效果[7]。
另外,还有一种采用X射线测量镀层厚度方法,是目前较为通用的方法[8]。测量原理如下:首先使凸面状的摇臂顶端与基体金属的表面镀层形成相接触的状态,然后由摇臂的轴心部位向镀层照射X射线,通过镀层反向散射,先测出来自基体金属(即镀层的里面)的反射量,再换算成镀层厚度。
2. 7 超声波测厚
超声波测厚仪可用于测量多种材料的厚度,如钢、铁、塑料和玻璃等。但是,目前国内还没有用到,国外极少数厂家有这样的仪器,适用多层涂镀层
厚度测量或磁性测厚和电涡流测厚方法无法测量的场合,如德国EPK公司生产的QuintSonic型超声波测厚仪及美国DeFelsko公司生产的PosiTector 100 /200型超声波涂层测厚仪,对木材、塑料、玻璃、混凝土、陶瓷及金属的油漆、瓷釉和其他绝缘金属涂镀层厚度都可进行测量。其最大的特点是,只需一次测量即可测定多层涂层的总厚度及指定的各层厚度,且精度可达到(2μm±3%)。
2. 8 光学测厚
光电法是光学法中应用较好的一种,它以光电器件为传感元件进行光电转变,通过对电信号的处理来实现厚度测量。采用该方法还可检测出长、宽、直径、表面粗糙度、角度等其他多种几何量。测量对象也较广,并不局限于金属或非金属,而且测量精度高、性能稳定,可实现非接触测量等,因而在几何量测量领域使用较多。该方法的缺点是仪器对环境、振动、温湿度等较为敏感。激光作为一种新型光源,与其他光源相比具有单色性好、方向性强、光亮度高的优点,目前光学法测厚常用的光源一般采用激光。赵世强[9]对CCD(Charge CoupledDevices,电荷耦合器)光电式测厚仪进行系统研究指出,采用CCD为光电转换元件实现对厚度的非接触测量是可行的。
除了上述几种涂镀层厚度测量方法外,还有一些常用的厚度测试方法,如德国BYK3410破坏式测厚仪,采用带一定斜度硬质合金刀头对基材上涂镀层进行划痕处理,可测定塑料、木材、水泥、软金属基材上的涂层厚度(2~2 000μm之间的涂镀层)。另外,目前市场上已经出现采用放射测厚原理的测厚仪,但是价格非常昂贵(人民币10万以上),适用于一些特殊场合。
3结语
目前,各种检测的涂镀层厚度方法已在工业生产方面得到了实际应用,产生了巨大的经济效益。但是,对涂镀层厚度各种检测方法及仪器的研究还需在以下几个方面继续努力:
(1)提高各种涂镀层厚度检测仪器的精度。随着现代工业的飞速发展,机械设备的各种配合精度要求越来越高,这就对采用表面覆层技术修复或强化的配合面的尺寸精度越来越高,因而也就需要更加精确的检测手段对其厚度进行控制;
(2)加速便携式涂镀层测厚仪器的研究开发,实现一机两用(磁涡兼容)、一机多头(探头)、一机多型,促进涂镀层测厚仪器在施工现场的应用,有利于现场控制涂镀层厚度,提高生产效率和施工质量;
(3)开展涂镀层厚度在线测量的研究,有利于提高涂镀层制备的效率,降低涂镀层材料的浪费。
[参考文献]
[ 1 ] 徐滨士.纳米表面工程[M].北京:化学工业出版社,2004.
[ 2 ] 徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社, 1999.
[ 3 ] 刘振作.涡流涂镀层测厚仪的开发与应用现状[J].材料保护, 2003, 36(9): 64~65.
[ 4 ] 刘佑厚,宋铭田.镀层厚度自控仪———一种改进的安培小时计[J].材料保护, 1994, 27(7): 28~30.
[ 5 ] 梁鸿生,赵春音,刘庆丰.钢材表面涂镀层厚度在线测量的研究[J].西安理工大学学报, 1997, 13(3): 249~253.
[ 6 ] 安福林.镀锌测厚仪[J].核电子学与探测技术, 1997, 17(4): 288~291.
[ 7 ] 姜 睿.镀层测厚仪在宝钢热镀锌生产线上的应用[J].中国仪器仪表, 1997(4): 27~30.
[ 8 ] 宋晓辉,安 敏,吴钟达.镀层厚度测量方法[J].上海计量测试, 2005(3): 35~36.
[ 9 ] 赵世强. CCD光电式测厚仪及其系统的研究[D].秦皇岛:燕山大学出版社, 2003.
作者:杨 华,董世运,徐滨士(装甲兵工程学院装备再制造技术国防科技重点实验室,北京100072)




